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Al] S~’lLACrl’

“J’llc ZcrO A1lnillilation  Pcrioclic  (ZAP) colltxollcr  is ap~)licd  to t]lc problem  of vibration
colltrol  of a Iloncolocatcd  flexible structure. 1 t is shown that even though the transfer
fmlcticm is no]ll~~inil~~~lx~l-pllasc,  a plant inverse ccmtrollcr can be clcsigllccl which elicits
a clcmclbeat  closecl-loop  response. The transfer function under investigatioll  arises from
a noncolocatecl  actuator/sensor configuration used on the ASTR13X  flexible structure at
USAF/1’hillips  Laboratory. Several simulation examples are given to clemonstratc  the
ZAP control mcthocl.  As expected from the theory, the closed-loop response is cleadbeat,
ancl the vibrations arc darnpccl  instantaneously.

1. 1NTROIIUC’I’1ON

The Zero Annihilation Periodic (ZAP) control law was introduced in Bayarcl  [3] [4] [5] for
controlling nonminimum phase systems using stable plant inversion. The general approach
is based On t~le notion of a mathematical ‘(lifting “ in which a serial-to-parallel conversion
is performed on the plant input and output signals, and mappings arc considered bet wet-m
the vcctorizecl  c~uantities,  I)aya.rd’s  lifting [5] is a ge]lcralization  of Lozano’s  lifting  [10] to
the cxtenclecl  horizon case. ‘1’IIc gmleralization  to the extenclcd horizon case is crucial for
control gain reduction in orclcr to allow practical implcmcmtations  of the approach.

A key property of the above liftiligs which makes thcm so useful is that the traxlsmiss~o]l
zeros of the lifted plant arc annihilated (i.e., placed to the origin). This zero-  annihilation
(2A) property allows the lifted pla~it to bc stably ixiverted  using sta~~clarcl control methods.
This result is important to xnany areas of colltrol,  con-lllltll~icatiolls,  arid signal processing
where a stable plant inverse is often clesircd  but not possible due to nonn~irlinlurn-  phiise
restrictions.

III the present paper, the extended horizon ZAP contrc)]lcr  is appliccl to tlic problem of
vibration control of a no:llllillix~l~lnl-pllase  transfer function. The transfer functioli  arises
fl’0111  a noncolocatcd  actuator/sensor configuration USCCl  011 the ASTR13X  facility at the
USAF/Phillips Laboratory, Edwards Air Force Base [1 I]. Several simulation examples
arc given to demonstrate the ZAP control method. As cxpcctccl  from the theory, the
closed-loop response is deaclbcat,  ancl the vibrations arc clanlped  illstalltaneously.



‘2. llACKGllOUN1)  ANI) NOrl’A’l’ION

L’onsidcr  the i[lpllt/olltlJllt  Illodel,

wllcre  pc~lyxlomials A and B arc assumed to bc relatively prime. It is assumed that L1 # 0,
so that the polynomial B cayl be fwtorcd u)licluely  ilito t~lc form B(2– 1 ) = z- ~ b~ ~“(z ‘-1 )
where ~?(.z-l ) is rnonic and d == 1 is tllc ~~lallt  delay. It is clcsirccl  to transform (2.1) into
the l~lock  Multirate  Input/Output form of Altxn-tos  [I], for which it will be necessary to
make tllc following assulnptions,

A.1 ‘J’I]c  plant clclay is known (and givcll by d =: 1)

A.2 An upper bouncl ii ~ n is known on the plant orcler  n

‘J’hc choice d = 1 in assumption A.1 is for convenience only ancl is not a. fundamental
restriction. In the case that d +: 1, knowledge of d ensures that all subscquc]]t  cxpressicms
call be appropriately lnoclificcl  without loss of generality.

Choose  some horizon time N > R. ‘1’he system (2.1) is iterated to give the following system
of linear equations,

Y(k) == AIY(k) + AzY(k – 1)+ Ill U(k) +- l?zU(k  - 1) (2.2)

wllerc,

Y(k) ==

‘ykN-tl

$/kN-l  2

P!/kN-l N

(2.3)

Al == lower triangular Tocplitz,  with first column [0, -al, . . . . --a,,,  O, . . . . 0]7’

A2 == upper triangular I’ocplitz,  with first row [0, . ...0, –a,}, . . . . –al]

DI =:: lower triangular- Tocplitz,  with first coluxnn [Ll , bz, . . . b,,, O, . ..0]7’

112 == upper triangular Tocplitz,  with first row [0, . ...0, L, . . . 62]

It is convenient to combine terms involving Y(k) in (2.2) and rearrange to give the following
input/output characterization,

Block Muliiratc  Input/Output (BMIO) Representation

Y(k) =: AY(k  -- 1) -t- HU(k) -t IIU(k – 1)

2

(2.4)



whcr(!,
.“1 =- (1- /11) -”’.42 (2.5U)

Several  advalltages anti properties of tllc DMICI rcpresclltation  arc! discussed in .~lbcrtos
[1]. It is noted tlla.t  since Al is lower triwlgular  with zeros oIl tl~c diag;c)nal,  the qwmtity
(1 - .4]) is always  invertible. IImlcc the quantities in (2.5)  always exist, ancl tl,e IIIv110
I11OC1C1 (2.4) is a first orclcr vector AItX process which is ccluivalcnt  to the original systeln
(2.1 ). It is elnphasizcci that oIlly  a.ssulnptions  A. 1 ancl A.2 were recluirccl  to ~Jut the plant
into the clcsired  I3M1O form.

I>olyllc)xnial  d is cliviclccl  i]lto B to give im~)ulsc  rcs~~oxlsc  SCCIUCIICC {}~i},

(2.6)

The quantities hi are referred to as Markov parameters. The impulse response sequence
{~~i } is not assumed to be convergent (i.e., the systcln  lnay bc unstable) .  Usil~g  the
‘J’ocplitz structure of Al and 111 ancl relation (2.6), it can be shown [1] [3] that the matrix
H ill (2.4) (2.5b) can be written in terms of the Markov parameters as,

This is the clesircd  expression for H, i.e.,

H = 10WCX’ triangular Tocplitz,  with first column  [h~, h2, . . . . hN]7’

Since the delay is unity by assumption (i.e., d =
(i.e., hl # O), and is always irlvertible.

3 .  GENEItALIZE1>  LIFTINGS

111 this section, a class of generalized liftings wil’
sentation  (2.4).

(2.7)

1), the matrix H has a nonzero  diagonal

be chdinecl  from the BM1O plant reprc-

Some ncw notation is requirccl at this point. In general, consider some vector V c R’v.
Then a partial horizon vector V, = SV is clefined  where S c RUXN  is a selection matrix
which selects a < N comporlelits  of V for ixlclusiol~ ill V~ E R“.  For this purpose, S will
be a matrix of O’s and 1’s with a a single “l” in every row, and a single “l” in only o of
its N columns.

As indicated by the expression V. == SV, the subscript ‘(s” will be usecl throughout to
clexiote  quantities which are construct.ecl  from ‘iselectecl” elements of their unsubscripted
coulltcrpartso
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‘J’llc sclcctioll  lnatrix .S <lcfI1lwl  aljov(;  c;(11  also bc t,lloug]lt  c~f a s  ljcillg slwcifiml ulliquely
I)y a (), 1 ‘u)27Ldo’W vc(;io?’  p = [p,, . . . . plv] \VlloSt!  e!lt, ries  itIC,

{
1 if it]) cllt,ry  of 1“ is ixlclllde(l  ill V~f), ,.
0 otjllmwisc

‘]’~lc! lluTnbcr  of “1 ‘S” ill p is dcfirled  as o. FJotc  that if tllc clcnllcllt,s  of f) lvclc to bc ~)lottf.x]
versus their illdcx, a O, 1 “window” is forlIlcd over the N-step horizon, clcpicting  which u
colllponents  of V arc to bc included ill V~. 2’llc constructioll  of S frolxl  p ill this manner
dcfixlcs  a one-to-one lnapping  S = W(p) which will bc collvcllient  Ilotation  ill the paper.

As all example, consider tllc plot S]1OWI1  in l’ig. 1 for all in~)ut winclow  pU alld an out~mt
window pv.  The construction of selection matrices SU and SV corresponding to the winclows
pu and pv irl Fig. 1, is shown in the example below.

l’;xamplc  1 Consider  the case in Fig. 1 where N =- 6, alld  py == [0 ,0 ,1 ,1 ,1 ,0] ,  pU =
[0, 1,1,  1,0,0]. ‘1’hc!n, cry== au = 3, p; = [1,1, 0,0,0, 1] (the complementary willclow to p~)
and,

[

0 1 0 0 0 0 0
Su =“= W(pu) =“ 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1
[

0 0 1 0 0 0 0
Sy =: ~(py) =. 0 0 0 1 0 0 0

0 0 0 0 1 0 0 1
[

1 0 0 0 0 0 0
s; = l’l)(p; ) =. 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1
Note that in the example, we have includecl  the selection matrix S; associated with the
window p; which is dcfinecl as the O-1 complexnent of winclow pv. This colnple,rncmtary
willclow will play an important role in the following discussion.

Using the above notation, the following partial l:orizon  vectors will be usecl  in the paper,

u.(k) ~ S.u(k);  s. ~ W(pu)  c lr”xN

Y:(k) e. s; Y(k);  s; $. )4(/2;)  e n,(~--”~)’~
where pv and pU arc spccificd  O, 1 winclow  vectors, ancl p; is clcfinecl as the O, 1 complclncnt
of py. Intuitively, Y; is a vector colnprisecl  of all elements of the vector Y which are not
includccl  in Y~.

A general class liftings is now dcflned from the 131vl10 plant reprcscxltation (2.4) by making
the input nonzero  only  over a restricted portion of each horizon, and by rncasuring the
output  only over a restricted portion of each horizoxl.  Specifically, the partial horizon input
and outputs defined a.bovc  are used in the IIM1O rnoclel  (2.4) to give,

(31)
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It, is S11OW1I ill [5] that t,llc lifted ~)laIlt, (3.1 )(3.2)  c:ln be transformed by silnilarity  to tllc
follc)willg  lIlorc uscfl]l forlll,

~cncmlizcd I,afting System  Model

Y-.(k) H SYA s:’ sy.4(s;  )~’ SVBS;’

H 1Y.(k - 1)
Y:(k) =: Sj4S~’  S~A(Sj)7’  SjBS:’ Y;(JJ -- 1)
u.(k) o 0 0 U,(k -- 1)

[1Sy 11s:’
+  S;HS:’  u.(k) (3.3)

1

‘1’hc liftccl system lnodcl (3.3) is dcpictcd  in the block  diagram of Fip;.  2. It is SCCI1 that Y.
a~ld Y~c form two couplcti  subsystems which arc driven by a common input Us. It is also
notecl  that the transmission zeros of tllc transfer function from Us(k) to Y~(k) arc affected
by the choice of windows p. and pv. This is a kcy feature of the lifted systcm moclel which
will be used to advantage in later clcvclopmcllts.

It is notccl that the liftings  are cleflned  ulliquely by the choice of selection winclows pU ancl
pV. All important clas of liftings will IJC defined in the next section.

4. EX”J’ENDEII  IIORIZON I,IFTINGS

Consiclcr  the class of liftings  clefinecl by Bayard in [5],

Extended Horizon Liftings

ltl

f-’witm%]pu == o, ..,,
n

F--
A J-----

py = 0, . . ..00 . . . ..0.0 . . . . . o,~

(4.la)

(4.lb)

wllcre t ~ O, m ~ o, aIlcl n > 0 is the order of the irreducible plant (2.1). IQotc that the
total horizon length is givcrl  by N == m + 1 + 2n. This is denoted as an extcndccl  horizon
lifting because N is greater thal~ 2n where n is the order  of the plant.

Remark 1 The Lozano lifting [10] corresponds to a lifting where the horizon length N
is exactly 2n, and the lifted plant is square (i. e., au ==: cry). In comparison, the ~~xtcnclcd
IIorizon  liftings allow N >271 where the extra degrees of freeclom  will be USCCI  to advantage.

Remark 2 It is noted that if one chooses m > 0 in (4.1), the first control action is not
applied until m + 1 sa.mplc  times illto the wixlclow.  Hence, the extra 7n * 2’ secoxlcls  of free
tilnc  call bc used to perform computations (where T is the samplillg  interval). Since 7n
can be chosen arbitrarily in this lifting, the cleacl time caIl be matchecl to the real-time
colnputer  rcquircmcnts.

5

—



l{cl]~ark  3  If OIIC cllt)(js(’s t’ >  ( )  ill (-1.1 ) ,  t}lcu(~ are IIIOIK coIItrol i!l~jllts  thaIl out~)llts irl
tile lifted  systcnl (i. e., u,, >  au). It will bC s~!(:Il  tha t  t~lCSC C~tra dCgrCC’s Of frCCdOIn in
tllc’ ill~jut call ~>c USC(1 to adval~tagc! to llli Ililllizc  a qllacil’atic  coXltrol cost alld ~lcxlcc rcdl.lcc
collt,rol  gains sigllificaxltly conllJarcd  wit])  tile case t = O.

It IIas been S11OWII in Dayard [5] that tllc following coxlditiolls arc satisfied by tllc extcnclecl
horizon  liftillg (4.1),

Output Tracking (O 7’) Condition
H,II.J =- I (4p)

Zero Annihilation (2A) Conditions
11s:’  , 0 (4.3a)

A(s’;j’ . () (4.31))

Substituting the ZA conditions (4.3) iIlto (3.3) gives tllc sixnplifiecl  system ITIOC1C1,

Extended IIorizon  Lijting  Sysicm  Model

Y,(k) =: SyAS;’Y@  - 1) -+ H~U.(k) (4.4 CL)

Y:(k) = S~AS:’Y.(k  - 1) -{ S; HS:’UJk) (4.4b)

where “selected’) matrix l?~ is dcfinccl as,

H. == SYHS:’ (4.5)

Equivalently,  under the ZA conditions the system shown in Fig. 2 simplifies to the system
show]l in Fig. 3. All of the key pr-opertics  of the extcnclcd  horizon lifting (4.1) can be
understood by comparing Fig. 2 and Fig,. 3, It is xiotccl that Y~c no longer couples into the
Y. SUbSySteI1l. Furthermore, the Y: subsystem has bccoxne cleaclbeat  i.e., all of the poles
clf the Y~c subsysteln  are at the origin. Most importantly, (assuming H. is square), the
transmission zeros of the transfer function from  Us(k)  to Y.(k) have been annihilated (i. e.,
placed at the origin). If H. is not square, the tra.nsxllissioll  zeros of the “sc~uarecl  clowI:”
tralisfer function from V (where U, =-- l{j V) to Y, are annihilated.

5. ZII~RO ANNII-IILAT’ION  PERIODIC (zAI>)  CONTROI,

‘1’he placement of the transmission zeros to the origin by the extended horizon lifting (4 ,1)
allc)ws stable invertibility  of the transfer fuliction  froln Us (k) to Y~(k). ‘1’he ZAP control
law which will be discussed next dcaclbcats  the response Y.(k)  to follow the desired Y~(k),
subject to the minimization of a quadratic control cost.

‘1’o derive the ZAI’ controller, define the output error as,

E(k) =: Y~(k) – SyY(k)

Substituting (2.4) into (4.1), and using (3.2) ancl (3.12) gives,

E(k) = -SvAY(k  -- 1) - H~U3(k)  -{ lj(k)

(1.1)

(5.2)
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C~OIlsida’  t,lle  proljlcln  of forcillg  tllc error  irl (5.3)  to Zero ixl a sillglc ste~),  wllilc  111i11i1ni7,irlg
a quaclrat,  ic control  cost ~Jcllalty,  i.e. ,

Inin UjJ’(k)U,  (k)
[J.(k)

(5.4a)

subject  to
E(k)= 0 (5.46)

in light of the OT conditio]l  (4.2), this minimization problem caIl be solved uniquely to
give tllc ZAP control,

Zero Annihilation Periodic (ZA ]>) Control Law

u;(k)  =“ H:
(

--SYAS:”Y3(k  - 1)+ Yd(k)
)

(5.5)

=- K0Y3(k  -- 1) + LOYd(k) (5,6)

whcm the corresponding feedback  gains arc chdhcd as,

r{” z -.. H; SYAS;’ (5.7a)

L“ == H: (5.7b)

IIm-e  the superscript “o” “1S c.hoscn to emphasize tllc fact that the control nulls (i. e., dead-
beats) the output, and superscri~~t,  ‘(t” c~cllotm the Moore- I’enrose  pseudo-inverse (cf.,
1 ]arnctt [2]). m

For collvenicnce  the ZAP control law is sum]narized  in the block diagram of Fig. 4. It is
sI1ow11 in Bayarcl [5] that the 7~AI> controller mljoys the following properties,

1. The quadratic control cost (5.4a) is minimized at each stage, subject to the deadbeat
tracking constraint (5.4 b),

2. All closed-loop poles are at the origin (i.e., the closed-loop response is deadbeat), and
hence Y,(k)  converges to Yd(k)  in a single step,

3. The closed-loop system is internally stable (e.g., Y:(k)  remains bounded),

ltemark  4 As rnel~tioned  earlier, the I.ozallo lifting corresponds to a case where N ==
2n, crU == n, sigmay  == n. However, in this case the lifted plant is square, and there are no
surplus inputs to minimize the quadratic cost (5.4a) while satisfying the deadbeat condi-
tion (5.4 b). Hence, the control gains and illput control torques associated with Lozano’s
approach tend to be significantly larger  compared to the extenclccl  horizon case. For ex-
ample, in the simulation study to follow, it will be seen that a square lifting leads to pca.k
torques 4 orde~s  of magnitude Zargcr  than the corresponding cxtelldccl horizon lifting.
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6. AS’J’lL1’;X l“AC11,I’1’%

‘1’llC’ algoritlllll i s  Ilf>lv ev:dllatfxl by si[]l[llat,ioll Ilsillg  tllc dylliL1lliV 1110(1 (’1 of the tcst})cd
:~t, tll(:  LJ. S. A.} ’’. /I’llilli~)s  I,aboratory’s  Aclv:tIIcc(l  S1);~c(!  st,l-llct,(lrcs ‘J’cchtmlogy ltcscarc.h
l~Xl)crinlclltjs  (ASrl’IIEX)  facility. ‘1’llC IW1’f01111a1102 :tSSC%SI1l(!llt  SW1l~LI’iO  cO1lcclltratCS  011
vi bt; ttioll  sul)~jrcssic)xl  of tllc secondary xllirror  llsil]~ tllc ~)iczoc]cctric sexlsillg/:~ct~lz\.tioll
Clllbcdded ill tllc “smart strut” tripod, where it has bccl  I foulld that all trallsfcr  fllllctions
cxllibit  IIO1lI1li  Ili I1llll”ll phaSC! characteristics. A brief dcscriptioll  of tllc structure is given ill
tile following.

‘1’hc ASTI{l’;X  facility is located at the U.S. Air l’ouce  Plli]lips laboratory, Rdwards  AFB,
(;aliforxlial  and is a testbccl illtcllclcd for cxperilnents  to validate mcthoclologics  ancl algo-
rithllls large angle slmving; and vibration control  of flexible  s~)ace ~)latformls  [1 I]. It is an
antenna-like structure (k’igurc  5) alld consists of a ~livotillg  test article that is mountccl
on all air-bearing vertical pedestal. ‘1’llc test article is divicled  into t}lrec main sections.
The largest Section is the primary. Six triangular plates are l“nounted  on the primary truss
to gcmcratc  moment of inertia equivalent to that of a 5-meter reflector. In aclclitiorr,  two
cylindrical masses have been attached to opposite encls of the primary to reprwscnt  the in-
ertia of two tracking tclcscopcs. ‘l’he rear section, the tertiary, is usccl to house the systcm
electronics as well as to balance the structure. Finally, the front section, the scconclary, is
connected to the primary tllrc)ugll a tripocl  support structure. ‘Me secondary consists of
three small plates that are fitted in a triangular shape. A reaction wheel is locatccl  within
the triangular plate structure, while, many types of sensors can bc mountccl  externally.

A high fidelity flnitc  clcme!it  model ha.. been generated by the Phillips Laboratory that
consists of nearly 550 nodes ancl 1000 clcmcnts.  13ascd  on this model, a state space repre-
sentations  of the system can be clerivecl  for usc in design ancl simulation work.

of ixltcrest  in the present paper  is the active strut tripod supporting the scconclary. q’hc
piczoclectric  actuators and sensors in the tripocl are to bc used with the control algorithm
to effect vibration suppression. A six lnocle two-input two-output continuous-time state
space representation {A, E, C’, D} has been gcncratcd  froln tile original finite clcrncnt model
that results in the frequency clomain  input-ouput  relation

~(s) .= [C(SI --- A)-]]] + D] u(.s) (6.1)

where y, u g 7?2 and the matrices A, IJ, C and D arc of appropriate climcnsions.  All four
transfer functions in (6.1) arc nonminimum phase as is cviclent  from the pole-zero locations
in l’igures  6-9.

Sillce the ccmtroller  is in discrete-time, the plallt is digitized with a samplillg  interval of
7’ == 25 mscc.  ‘l’hc resulting cliscrcte  sta.tc  space rcprcse]ltation  {@, G, C’, D} lcacling to the
transfer matrix relation

y(z) == [L’(z1  – @)-l G + D) u(z) (~.~)

w i t h  climensions coxresponclirlg to those iIl (G.1). 1+’urthcrmore,  G, C’ and D arc partitioI~ecl
as
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wllicll also possesses ]]c)llI]liIliIIllllIl  phase characteristics, since tiler’c are o~Jcll loop zeros
outside the urlit circle  (Figllre  1 O). I+’or tllc pur~)oscs  of this paper, a further sixnplification
of tllc model is made  by settillg d = O. ‘J’his is C1OI-IC because our existing software was

devclopul for systems with unit delay. l’l Ic algorit]lxn, Ilowcvcr , is valicl  for any delay, and
tllc software will be upgradd in the near future. As seexi frmn the pole-zero lc)caticms in
l’igUI’C  11, this rcprcscnts  no serious loss of ?;cncra,lity sil)ce  tllc systcm with d ., () r~tai*~s
the Ilorlminixnuln  phase cllaractcristics.

‘1’he ixlput  and ouput  of the plant arc Incasurecl  in tmlns of the voltage in the I’ZT strut,
aucl lllust remain witllixl tllc range of +lOVolis.

‘7. SIMULATION RESUT’LS

The objective of this evaluation is to clemonstratc  the capability of the ZAP control algo-
rithm to effect stable plant inversioli on an existing physical system (the ASTREX  tcstb~!d)
and, perhaps the most important contributiol~ c)f this algoritm,  the extendecl horizon lift-
ing, that allows for adjustment of the required control effort levels by varying the partial
horizon length -?.

The open-loop output time response of the system to a nonzero  initial condition is shown in
Figure 12. The closed loop simulations are run for three different partial horizon lengths
1 == O, 16,40. The special case of the 2A]’ control law for 1 == O (i.e., a scluarc lifting)
results in the closed loop ouput  time respo]lse  of Figure 13. This case corresponds to
N =- 2n, u. == n, Oy which is a scluarc liftillg analogous to that of Lozano [1 O]. Although
the system exhibits deaclbeat response, the applied control force induces an extremely large
(orc~er  104) transient amplitude. Figure  14 shows the corresponding control il~put plot. In
this case, both input ancl output exceed the PZT strut tolerance of +lOVOlis.

When the horizon length is increased to 16 samples, the requirecl  control force is drastically
recluced (Figure 15). The ouput,  however, still reaches relatively high amplitude during the
1.6 sec that the input is applied (F’igure  16). Further increase in the horizon length / == 40,
results irl the time response S]1OWI1  in Figures 17-18. The  12 system states (Figures 19-21)
exhibit sixnilar  clcadbeat  behavior implying that internal stability is also nlailltaiIled.

8. CONCLUSIONS

~’he Zero Annihilation
bration control on the

Periodic (ZAP) controller has been appliec]  to the problem of vi-
.4 STREX structure moclcl. The ZAP controller is a plant inverse

control law which elicits a cleaclbeat  closed-loop response, evcrl though the sclectecl  transfer
fux]ction  was xiollnlil~ixzlur[]-phase (i.e., had zeros outsicle  the unit circle). Several sinlula-
tioxl runs were pmforvnml, ancl as expectecl froln tile theory,  the closed-loo])  resl~onse  was
clcaclbcat, and the vibrations were claxnpecl  instantaneously.
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